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Learning Objectives: 

 

From this module, a continuation of the last module, students may get to 

know about the following: 

1. Relating the multipole radiation to the sources producing the 

radiation. 

2. Spherical wave expansion of the Green’s function for the Helmholtz 

equation. 

3. Equations for the multipole coefficients in terms of sources. 

4. A look at the dipole case to get some idea of the order of magnitude of 

the radiation. 

5. A semiclassical treatment of the radiation from atoms and nuclei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

32 Multipole Fields - III 

 

32.1 Sources of multipole fields 
 

After having studied the properties of the multipole radiation - the energy, angular 

momentum and angular distribution etc, we now want to find the radiation produced by 

specific sources.  These sources are the charge density ),( tx


  and current density 

).,( txJ


  What we have in mind is the application of the ideas to emission of radiation 

from atoms and nuclei.  With this perspective, we also include intrinsic magnetization 

),( txM


, associated with intrinsic spin.  Since we can always analyze the time 

dependence into its Fourier components, from the very beginning we take the time 

dependence to be harmonic, so that 
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We write Maxwell’s equations for electric field E
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The continuity equation is  

 

 ∇⃗⃗ . 𝐽 = 𝑖𝜔𝜌         (4) 

 

Let us further change the variable from 𝐸⃗  to 𝐸⃗ ′ (outside the source 𝐸⃗ ′ → 𝐸⃗ ):  

 

 𝐸⃗ ′ = 𝐸⃗ +
𝑖

𝜔𝜖0
𝐽          (5) 

 

This makes the field 'E


 also divergenceless.  The equations in terms of these quantities 

become 

 

 ∇⃗⃗ . 𝐸⃗ ′ = 0,      ∇⃗⃗ × 𝐻⃗⃗ ′ +
𝑖𝑘

𝑍0
𝐸⃗ ′ = ∇⃗⃗ × 𝑀⃗⃗      (6) 

 

 ∇⃗⃗ . 𝐻⃗⃗ ′ = 0,      ∇⃗⃗ × 𝐸⃗ ′ − 𝑖𝑘𝑍0𝐻⃗⃗ ′ =
𝑖

𝜔𝜖0
∇⃗⃗ × 𝐽      (7) 

 

The curl equations can be combined to give inhomogeneous Helmholtz equation for 

𝐻⃗⃗ ′ 𝑜𝑟 𝐸⃗ ′: 



 

 

 

 ∇⃗⃗ × (∇⃗⃗ × 𝐻⃗⃗ ′) +
𝑖𝑘

𝑍0
∇⃗⃗ × 𝐸⃗ ′ = ∇⃗⃗ × (∇⃗⃗ × 𝑀⃗⃗ )  

 

Or 

 

 ∇⃗⃗ (∇⃗⃗ . 𝐻⃗⃗ ′) − ∇2𝐻⃗⃗ ′ +
𝑖𝑘

𝑍0
(𝑖𝑘𝑍0𝐻⃗⃗ ′ +

𝑖

𝜔𝜖0
∇⃗⃗ × 𝐽 ) = ∇⃗⃗ × (∇⃗⃗ × 𝑀⃗⃗ ) 

 

Or 

 

 (∇2 + 𝑘2)𝐻⃗⃗ ′ = −∇⃗⃗ × [∇⃗⃗ × 𝑀⃗⃗ +
𝑘

𝑍0𝜔𝜖0
𝐽 ] = −∇⃗⃗ × [∇⃗⃗ × 𝑀⃗⃗ + 𝐽 ]   (8) 

 

Similarly 

 

 (∇2 + 𝑘2)𝐸⃗ ′ = −𝑖𝑍0𝑘∇⃗⃗ × (
1

𝑘2 ∇⃗⃗ × 𝐽 + 𝑀⃗⃗ )     (9) 

 

These are the counterpart of the homogeneous equations obtained in the earlier units for 

source-free fields.  We solve one of these equations; say the one for 𝐻⃗⃗ ′ along with 

∇⃗⃗ . 𝐻⃗⃗ ′ = 0 and use the curl equation ∇⃗⃗ × 𝐻⃗⃗ ′ +
𝑖𝑘

𝑍0
𝐸⃗ = ∇⃗⃗ × 𝑀⃗⃗  to find the complete solution 

of the problem. 

 

The various electric and magnetic multopole coefficients, 𝑎𝐸(𝑙,𝑚) and 𝑎𝑀(𝑙,𝑚)  
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involved in the multipole expansion of the fields, 

 

  
ml

m

llM

m

llE Xkrgmla
k

i
XkrfmlaH

,

)])((),()(),([


    (11) 

 

  
ml

m

llE

m

llM Xkrfmla
k

i
XkrgmlaZE

,

0 )])((),()(),([


   (12) 

 

are given in terms of  𝑟 . 𝐸⃗  and 𝑟 . 𝐻⃗⃗ , or equivalently, 𝑟 . 𝐸⃗ ′ and 𝑟 . 𝐻⃗⃗ ′.  So it is sufficient to 

write equations for these scalars rather than for the vectors 𝐻′⃗⃗⃗⃗  and  𝐸′⃗⃗  ⃗.  For this take the 

dot product of equations (8) and (9) with 𝑟 , use the general vector relations that we 

encountered earlier also, viz,  
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the first on the left hand side and the second on the right hand side in these equations to 

get the following equations for  𝑟 . 𝐸⃗ ′ and 𝑟 . 𝐻⃗⃗ ′: 
 

 (∇2 + 𝑘2)𝑟 . 𝐻⃗⃗ ′ = −𝑖𝐿⃗ . (𝐽 + ∇⃗⃗ × 𝑀⃗⃗ )      (14) 

 

 (∇2 + 𝑘2)𝑟 . 𝐸⃗ ′ = 𝑍0𝑘L⃗ . (
1

𝑘2 ∇⃗⃗ × 𝐽 + 𝑀⃗⃗ )     (15) 

 

We have already solved such inhomogeneous equations via Green’s function method 

(Maxwell’s equations-II).  The solution depends on the nature of boundary conditions.  

For outgoing wave boundary condition, the solutions for the Green’s function  
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So the solutions to the above equations are 

 

 𝑟 . 𝐸⃗ ′(𝑥 ) = −
𝑍0𝑘

4𝜋
∫𝑑3𝑥′

𝑒𝑖𝑘⌈𝑥⃗⃗ −𝑥⃗⃗ ′⌉

⌈𝑥 −𝑥 ′⌉
𝐿⃗ ′. [

1

𝑘2 ∇⃗⃗ ′ × 𝐽 (𝑥′⃗⃗  ⃗) + 𝑀⃗⃗ (𝑥′⃗⃗  ⃗)]   (16) 

 

 𝑟 . 𝐻⃗⃗ ′(𝑥 ) =
𝑖

4𝜋
∫𝑑3𝑥′

𝑒𝑖𝑘⌈𝑥⃗⃗ −𝑥⃗⃗ ′⌉

⌈𝑥 −𝑥 ′⌉
𝐿⃗ ′. [∇⃗⃗ ′ × 𝑀⃗⃗ (𝑥′⃗⃗  ⃗) + 𝐽 (𝑥′⃗⃗  ⃗)]   (17) 

 

Now refer to the unit: Multipole fields-I, where we have defined 

 

 )()()( )2()2()1()1( krhAkrhAkrg lllll 
      (18)

 

 

From the asymptotic forms of )()2,1( krhl  it follows that since )()2( krhl  represents an 

incoming wave; so the coefficient 
)2(

lA  must be zero.  Hence in equations (10) and (11) 

we take 

 

 )()()( )1( krhkrfkrg lll         (19) 

 

outside the sources. 

 

32.2 Spherical wave expansion of the Green’s function 

 

We will now find the spherical Green’s function for the Helmholtz equation 
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     (20) 

 

For the outgoing wave the Green’s function is 

 

 𝐺(𝑥 , 𝑥 ′) =
𝑒𝑖𝑘|𝑥⃗⃗ −𝑥⃗⃗ ′|

4𝜋|𝑥 −𝑥 ′|
        (21) 

 

Similar spherical wave expansion was done for the Poisson equation in the undergraduate 

classes.  Following the same procedure we write the spherical wave expansion for the 

above Green’s function as 
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On substituting this expansion for 𝐺(𝑥 , 𝑥 ′) into equation (20), we obtain the following 

equation for 𝑔𝑙(𝑟, 𝑟
′): 
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The solution of this equation is given in terms of the spherical Bessel functions.  We want 

the solution that is finite at the origin and an outgoing wave at infinity.  Such a solution is 

given by 
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where (𝑟<, 𝑟>) refer to the (smaller/larger) of 𝑟/𝑟′.  The correct discontinuity in the slope 

is assured if A=ik, because 
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32.3 Equations for the coefficients 

 

Now look at equations (16) and (17).  If we take the point x


 to lie on a spherical surface 

completely enclosing the source, then (𝑟< = 𝑟′;   𝑟> = 𝑟).  On using equation (25) and the 

orthonormality of the spherical harmonics 
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we have 
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By means of this projection we see that ),( mlaM  and ),( mlaE of equations (12) are given 

in terms of the integrands of equations (16) and (17) by 
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Given the source densities 𝐽  and 𝑀⃗⃗ , these equations provide us the strength of the 

multipole radiations, ),( mlaM  and ),( mlaE .  The equations can be put in an alternative 

and more transparent form by using the definition of the angular momentum operator and 

various vector relations.  Thus for any vector field 𝐴  
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On using the first identity for 𝑀⃗⃗  and the second for 𝐽 , we obtain for ),( mlaE  
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In the last step we have used the continuity equation (4) to express 𝐽  in terms of charge 

density ρ.  We now use the Green’s theorem 
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For infinite volume, the surface integral on the right vanishes and we have 
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If we apply this on the first term in the square brackets of equation (31) with 

),.(),( Jrkrjl


 

 

then ∇2 is replaced by −𝑘2.  In the second term we do radial 

integration by parts (again neglecting the surface term): 
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The result is 
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In a similar fashion 
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32.3.1 Further Simplification 

 
These results are valid for any source size and any frequency.  However, for many 

applications, particularly in nuclear and atomic systems, the source dimensions are very 

small compared to the wavelength.  If r represents the size of the source, then kr<<1.  In 

such a situation multipole coefficients can be simplified considerably.  We can replace 

𝑗𝑙(𝑘𝑟) by its small argument limit: 
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If we keep only the lowest order term in (kr), the above expression for the electric 

multipole coefficients is approximated to 
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The multipole moments lmlm QQ ',  are 
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The lmQ  is the same as the electric multipole moment defined in electrostatics except of 

course that now the charge density is a function of time.  The lmQ'  is the induced electric 

multipole moment due to intrinsic magnetization.  It is generally much smaller than 𝑄𝑙𝑚.  

The electric multipole radiation is thus essentially determined by the charge density of a 

distribution. 

 

If we apply the same “long wavelength” limit kr<<1 to the coefficients 𝑎𝑀(𝑙,𝑚), and 

follow the same procedure, we obtain the following approximate expression for these 

coefficients: 
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The 𝑀𝑙𝑚 and 𝑀′
𝑙𝑚 are the magnetic multipole moments and are given by 
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If a system has intrinsic magnetic moment, the two terms above are of the same order of 

magnitude.  The magnetic multipole radiation is determined by the magnetic moment 

densities, (𝑟 × 𝐽 )/2 and 𝑀⃗⃗ . 
 

32.3.2 The dipole case 

 

Let us look at the special case of dipole emission.  Let us first look at the contribution due 

to the charge density 𝜌(𝑟 ) and current density 𝐽 (𝑟 ) only.  Further consider first the 

special case of radiation in the m=0 case.  In fact this can be considered the general case, 

since the other two, 𝑚 = ±1 are related to m=0, by rotation.  From equation (35) we get 
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Similarly from equation (38) 
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This equation can be further simplified by partial integration.  The result is 
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The current density 𝑗  is of order 𝑣 𝜌, where 𝑣  is the velocity of motion of the charges.  

Hence from the definitions (34) and (37) of the amplitudes 𝑎𝐸 and 𝑎𝑀 respectively, Ma  is 

smaller than Ea  by a factor of order (v/c) and hence the intensity by a factor of order 

.)/( 2cv   Though we have proved this result only for dipole radiation, it is in fact true for 

any multipole: For a multipole of any order l, the intensity of the magnetic radiation is 

order 2)/( cv  smaller than the electric radiation. 

 

The contribution of magnetization to the radiation is obtained from equations (36) and 

(39) respectively.  For the dipole case, simplification by partial integration as before leads 

to 
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32.4 Multipole radiation in atoms and nuclei 
 

Radiation is produced in transitions from one quantum state of an atom or a nucleus to 

another.  So basically multipole radiation in atoms and nuclei is a quantum process and 

requires the use of quantum mechanics.  There are two distinct steps involved in this 

quantization process.  One is that light is not emitted in a continuous process but as 

distinct quanta of energy  𝜔.  Secondly, the source of the radiation is a quantum 

mechanical system rather than a classical distribution of currents and charges.   However 

some qualitative aspects can be understood from a semiclassical treatment on the 

application of formulas derived above.   

 

Transition probability 

 

The transition probability, Γ (which is the reciprocal of the mean life of transition) for 

emission of a photon of energy  𝜔, is given by the radiated power divided by 𝜔.  The 

expression for the radiated energy was derived in the last module, and is 
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In the long wavelength limit, the amplitudes 𝑎𝐸 and 𝑎𝑀 are given by equations (34) and 

(37) respectively.  These lead to the following expression for the transition probability for 

the electric dipole case 
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For magnetic multipole transitions the expression is the same except for the replacement 
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To find the order of the effective multipole moments we proceed as follows:  In the 

definition (35) of 𝑄𝑙𝑚, the spherical harmonic is of order unity.  The integral of the 

charge density 𝜌(𝑟) is order e, the effective charge.  If the effective size of the system is 

R, then 𝑄𝑙𝑚 is of order 
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Further, if the effective mass of the system is m then the effective magnetic moment of 

the constituents is 
𝑒 
𝑚

 and the effective magnetization is 
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The most naïve estimates of multipole coefficient 𝑄′
𝑙𝑚 is then 
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Similarly 

 

 )()'(
1 1 l

lmlm eR
mc

OMM
c


      (46) 

 

Using these rough estimates, we can study some qualitative features of radiative 

transitions in atoms and nuclei. Both in atoms and nuclei, the transition energies,   are 

usually small compared to the rest energy 
2mc  of the system.  This implies that we can 

expect 
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Thus the electric multipole transitions are dominated by the charge density with small 

contribution from intrinsic magnetization.  On the other hand, the magnetic multipole 

transitions get similar contributions from orbital magnetization and intrinsic 

magnetization due to spin. 

 

In atoms it is the electrons that are the source of radiation.  The size of the system 

depends on whether radiation is being emitted by the valence electrons or by the inner 

orbit electrons.  If 𝑎0 is the radius of the Bohr atom, the size of the radiating system can 

be written as )( 0

effZ

a
OR  .  Then effZ is of order unity for valence electron transitions, 

and of order Z for inner shell electron x-ray transitions. 

 

From equations (43) and (46) above, the relative amplitude of the magnetic multipole 

moment to the electric multipole moment of the same order is  
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Hence the transition probabilities will be in the ratio 
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For valence electron transitions this ratio is  
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Hence magnetic transitions are completely negligible compared to the electric transitions 

of the same order.  For x-ray transitions in heavy elements 
ZZeff  .  Hence 

2)
137

(
effZ

 is 

still small but not negligible.  Only in this situation are the magnetic transitions of any 

significance.  However there is an overriding clause due to the selection rules.  If the 

lowest order electric transition is forbidden but the corresponding magnetic transition is 

allowed by the selection rules, then such a transition may also become important. 

 

The relative size of transitions, electric or magnetic, differing in order by one unit is also 

of interest.  From equations (41)-(46) 
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In atoms, the transition energies are 
)137/( 222
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.  The radius is  
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Thus if the selection rules allow several multipoles, the lowest allowed order generally 

dominates.  Also the ratio of the magnetic to electric transition probability is of the same 

order as the ratio of probability of (l+1) to l transition.  Thus if the lowest allowed 

magnetic transition is of order l but electric is of order (l+1), the two can be of same 

order.  But in the opposite case the magnetic transition is completely negligible. 
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 holds true.  Numerically, 

the nuclear radius 
3/1153/115 104.1)(104.1 A
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  .  This yields  
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
 .  Transition energies in nuclei vary over a wide range – from several 

keV to several MeV.  This means that for heavy nuclei .0001.01.0 kR   Thus for high 

energy transitions the suppression factor for higher order transitions is not very large.  

However, for low energy transitions higher order multipoles are highly suppressed. 
  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Summary 
 

1. After having studied the properties of multipole radiations we next 

wish to relate them to the sources of these radiations.   

2. Since, we have in mind radiation from atoms and nuclei, the intrinsic 

magnetization of atoms and nuclei due to spin angular momentum is 

explicitly included in this study. 

3. To relate the sources to the coefficients in the multipole expansion, we 

obtain spherical wave solutions of the Helmholtz equation. 

4. We next look at the special case of multipole radiation and conclude 

that the magnetic dipole radiation is weaker than the electric dipole 

radiation by a factor of (v/c)2.  This is in fact true for multipoles of all 

orders. 

5. Lastly we briefly look at the multipole radiation in atoms and nuclei.  

This subject requires quantum mechanics for its proper treatment.  So 

all we do is to make some general comments on radiation in atoms 

and nuclei.  


